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ABSTRACT 

We use the Operator Product Expansion (OPE) of quark vacuum 
polarization functions to show that the dispersion relation of Kniehl 
and Sirlin will yield the correct result to all ordera in Q, when applied 
to the QCD correction to the leptonic decay width of the Higgs boson. 
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I. INTRODUCTION 

Dispersion relations (DR’s) are widely used to calculate higher order elec- 
troweak radiative corrections [l, 21. However, the freedom to make subtractions 
in DR’s often makes the choice of one DR over another a delicate issue [3,4], since 
a certain DR may work for some observables, but not for others. The use of a 
particular DR is often justified by comparing the result with that of a direct cal- 
culation using dimensional regular&ration or some other computational technique 
at a given order [5]. 

We wish to emphasize that in so far as higher order QCD corrections are 
involved, the Operator Product Expansion (OPE) can be used to decide on a 
DR without explicitly doing a multi-loop calculation. In a previous paper [6] we 
illustrated this with the example of higher order corrections to Ap. There we 
found that the subtracted DR’s employed in Refs. [l, 31, as well as the naive un- 
subtracted DR give the correct result for hp. In this paper, we wish to illustrate 
this use of the OPE by considering corrections to the decay width I’(H --) Fe-), 
and show that in this particular case one does need a subtracted DR, and that 
furthermore the subtraction of Ref. [3] g ives the correct result, whereas that of 
Ref. [l] does not. 

This paper is organized as follows. In Section II, we discuss the role of sub- 
tractions in DR’s and the use of the OPE in determining the correctness of 
the subtraction. In Section III we show that the DR of Ref. [3] gives the cor- 
rect answer to all orders in a, when used to calculate the QCD correction to 
I’(H + e+1-). In Section IV we show that the DR of Ref. [l] gives the incorrect 
answer for the same correction. Section V concludes. 

II. THE NECESSITY AND CORRECTNESS OF SUBTRACTIONS 

In this section, we will look at the self energies that must be computed to 
obtain the QCD correction to I’(B + L+.f-). We will show that a naive applica- 
tion of Cauchy’s theorem will not lead to a dispersion relation for this correction 
and that a subtraction must be introduced. We then discuss how one may check 
which choice of subtraction is the correct one. 

QCD corrections to the decay width l?(H + C+L-) enter through the quark 
contribution to the self energies of the W and the Higgs. In Ref. [7], it was shown 
that 

r(H -+ t+t-) = ro(Ei -A+!-)[1+6+...], (1) 
where 

6= Gvw(q 

M& 
+ GmwZI>* (2) 
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The tree level value I0 is assumed to be expressed in terms of G, which is why 
IIww(O), the self-energy of the W evaluated at zero momentum transfer, appears 
in this formula. The derivative of the self-energy of the Higgs, IIh,(M&), comes 
from the wave-function renormalization constant of the Higgs field. 

In contrast to the Ap case that was considered in a previous paper [6], one 
must introduce a subtraction in order to write down a dispersion relation for S. 
This can be seen as follows: applying Cauchy’s theorem to IIww(s) and IIHH(~), 
we can write 

IIww(s) = + ds’ s, J 
A= ImHww(s’) + 1 f &, ‘ww(“) 

-S - iE 5z (#Ida 9’ - s ’ 
ha(s) = i J*’ ds’y!;;;) + & f ,-*1 ds’=sTa_(:‘). (3) ,- 

We consider the II(s to be regularized and finite so that both sides of these 
equations are well defined. Note that from this point of view, the radius of the 
contour As has no relation to the ultraviolet regulator which makes the II(s 
finite. Substituting these expressions into Eq. (2), we find 

s = 60(A2) + &l(hZ), (4 

where 

&,(A~) = ; J*’ ds [ --& lmn;w(s) + (s ~$H(s/cj2 , 
If- 1 

&,(A2) = & 1 =wT(B) + ITaH Mik 1 (s - M&)2 ’ (5) 

Since IIww( s) N s and IIHH(s) N 8 as 8 + 00, both &(A2) and &(A’) diverge 
quadratically as A2 + 00 even though their sum is finite and independent of 
AZ. Therefore, we find that b cannot be replaced with &(oo), and that the nai’ve 
substitutions of Eq. (3) d o not lead to a dispersion relation which expresses b as 
an integral involving only the imaginary parts of the II(s) 

This problem can be solved by noticing that the representation of the II(s 
as an integral along the real s axis plus an integral around the circle at ]s] = A’ 
is not unique. It is always possible to introduce an analytic function f(s) such 
that 

0 
1 A= =- 
7r J ds Imf(a) + If 

27ri Ia(=Aa da f(s), (6) 

and write 

A’ 
Hww(s) = 5 ds’ J [ Imhw (8’) 8’ - 8 - ie + Imf (8’) 

I 
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1 , (7) 

without changing the value of II ww(s). (We do not consider a similar subtraction 
on IIH&s) here because the subtraction will not contribute to the derivative 

*hd4.) 
Substituting Eq. (7) into Eq. (2) gives us 

6 = Jj(A')+ Rf(A2), 

where 

6j(~2> = i /^’ ds [ & ( lmn~w(r) + Imrcs,) + ,sr$t/E)2] 7 

R,(A”) = +’ 2xi fi,,=*a ds [& {n,:(s) + m} + (7$)2] - C9) 

If the subtraction f(s) is judiciously chosen so that 

lim Rf(A’) = 0, 
Aada 

then one obtains the dispersion relation 

6 = m4, (11) 

i.e. we can represent 6 by an integral over the real .g axis only. 
We would like to emphasize here the viewpoint that the purpose of subtrac- 

tions in any DR is to make the integral around the circle at 1~1 = A2 disappear. If 
the integral disappears automatically in the linear combination of vacuum polar- 
ization functions that one wishes to calculate, then subtractions are not necessary. 
For instance, this has been shown to be the case for Ap [6]. 

Whether a certain choice of the subtraction f(a) is correct or not can be 
checked in two ways. The first is to calulate 6j(oo) and see if it reproduces the 
correct result to a given order in a,. This was the strategy used in Ref. [5]. 
This technique is useful for motivating the choice of one dispersion relation over 
another, but cannot rigorously establish the correctness of such a choice to all 
orders in a,. 

A second method is to see if the condition (10) is satisfied. Since we only 
need to know the behavior of the integrand in the limit s -+ co, the operator 
product expansion (OPE) will suffice to tell us whether this condition is satisfied 
to all orders in a,. Thi s is the approach we will use in the following. 
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III. THE KNIEHL-SIRLIN SUBTRACTION 

In this section, we will look at the subtraction introduced in Ref. [3] and show 
that Eq. (10) is indeed satisfied. . 

Following Ref. [3], we define the following notation: 

II~(q,ml, m2) = -i 1 d*zeig’e(OIT+ [J2A(z)J:At(0)] IO) 

= gwZIV’A(s,m3,m2) + qpqVAV*A(4m,m2) 

IIY,A(s,ml,m2 AvjA(s, ml, ml), 

(12) 

where 3 = q2, and J:A( z re ) p resents the vector and axial vector currents con- 
structed from quark fields, respectively. Note that 

n”“(a) = AvBA(a) - &~~(a), (13) 

so that 
IIv~“(0) = AvoA(0), 

unless XyA(s) has a pole at s = 0. We further introduce the notation 

(14) 

*j IIZ”(S) = IIv*A(8,mlr ml), 

Q”(s) = AvA(s, ml, m2), 

AZ”(s) = AvA(a, ml, m2), 

lQA(9) = vh,m) + nY,‘(s,m2,m2)] , 

qA(S) = ; [XKA( 4 ml, ml) + AvfA(s, m2, m2)] , 

A:“(S) = f [AqA( 8, ml,%) + AvvA(s, ma, m)] . (15) 

The conservation of the neutral vector currents implies the Ward Identities: 

n;(S) = -8q(8), A;(a) E 0. (16) 

These definitions let us write the contribution of a quark doublet, with masses 
ml, and mz, to II&O) as 

&w(O) = g [n,‘(o) + n;(o)] = f [A;(O) + A:(O)] , 
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The subtraction scheme of Ref. [3] is then given by, 

(18) 
Using Eq. (13), this can also be written as 

which shows that the effect of the subtraction amounts to applying Cauchy’s 
theorem to the A(s)‘s and X(a)‘s instead of the II(s) 

Application of this subtraction to IIww(O) gives us 

(20) 

Therefore, we can write 

6 = ks(A’) + RI&~), (21) 

where 

JKs(A2) = ; /^’ ds [3 { rm~‘O + Imq:(1)} + (.y$f$2] , 

&s(A2) = (22) 

In order to show that 

A!~= &s(A2) = 0, (23) 

we need the following two relations. The first is that when s >> 02, 

&IH( 8) = J&t&) 1+ 0 [ (31) (24) 
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where II,,(s) is the self-energy of the neutral Goldstone boson (which is absorbed 
into the Z), and u is the Higgs VEV. This can easily be seem to be true since the 
two functions must coincide in the limit o2 + 0. The second is the Ward Identity 

&c&J) = &As”(s), 
4 

(25) 

which comes from the conservation of isospin currents. See Ref. [8]. 
Using Eqs. (24) and (25), we find 

The asympotitic forms of the A(s)‘s as (s] + 00 can be gleaned from their 
OPE’s found in the appendix of Ref. [9]. They are: 

A:(-Q2) = da,(Q) [&(Q) - 7jl2(Q)]’ + &2(4 [7jL1(4 - 7h(P)12 + 0 $ 9 
( 1 

A&Q21 = &u(Q) [+(Q) + h2(Q)12 + &2(4 [*I(P) + ~2(cl)12 + 0 $2 , 
( 1 

A,“(-Q2) = d,,(Q)[2ti1(Q)~ +=2(Q)'] 

+d-,,(p) [27&(/42 + 2&2(42] + 0 $ . ( i 
Though the OPE’s are derived in the deep Euclidean region -a = Q2 > 0, the 
power dependence of the A(s) ‘s on s will be the same all around the circle at 
(8) = Al. Therefore, we can see immediately that 

lim RKS(A’) = 
S~-wo 

= 0. (28) 

Therefore, 
6 = 6KS(oo). (29) 

We believe this derivation clarifies the reason why the DR of Ref. [3] was 
found to give the correct answer at O(aa,) in Ref. [5]. In fact, since the OPE is 
correct to all orders in a,, Eq. (29) is also correct to all orders in a,. 
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IV. THE SUBTRACTION OF CHANG, GAEMERS 
AND VAN NEERVEN 

Next, we will look at the subtraction introduced in Ref. [l] and show that in 
contrast to the subtraction of Ref. [3], Eq. (10) is not satisfied. 

The subtraction introduced in Ref. [l] is given by 

Note that the difference from the scheme of Ref. [3] is that the same subtraction 
X,V is used for all four cases, II:, IIt, II!, and II;. 

This time, IIww(0) is written as 

+& {,,afA2 da (F + T + 21:(.)]] 

‘3 
‘“:( ) + Irnt’(‘) + 2ImX,V(s) - ImAX - ImX!(s)} 

A;(a) + A8s) 7 + 2Ar(s) - X:(a) - A:(a) . 
a 

(31) 
This gives us 

where 

6 = bcclv(A2) + kav(A2), (32) 

hxv( A”) = JKS(A2) + 3: * 1 a da [2ImXr(s) - ImA: - Imx$(a)] , 

kmv(A’) = &s(A2) + (33) 

Using the OPE’s of the A(a)‘s, again from Ref. [9]: 

A:(-Q') = &,(Q) + eA2(Q) b1(Q) ;2h2(Q)12 

+~,,(Q) h(Q) --F@)]’ + 0 ($) , 
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X2(-Q’) = &(Q) + d,,(Q)[&‘(‘) ;2ti2’Q)12 

+~X3(Q)[+$i?) + WQ)1' + o 

Q2 

x:(-Q’) = d,,(Q) + d*,(Q)i2A1(Q’2;22~2(Q)21 + 0 (&) 7 

A;( wQ2) = d,,(Q) + ~~2(Q)‘2~102~221j12(Q)21 + 0 

we find 

,im, &GN( A”) 4 

. GP 1 -- 
= hki fi27ri I+ha f [I 

&2(s) - &(a)] 

# 0, 

PWs)2 + 2h2(a)2] + o L 

-3 ( )I 32 
(35) 

which shows that the DR of Ref. [l] will give the wrong answer for I’(H + PP), 
although it gives the correct answer for Ap [6]. 

Ref. [9] gives the first few terms of the perturbative expansion of the Wilson 
Coefficients in the running coupling a,(Q) and they are 

eA2(Q) = -& l+;++..* , 
1 1 

d,,(g) = --$ 1+2++..* . 1 
Therefore, at O(aa,) we find 

where 

,!immRcolv(A2) 
+ 1 

(36) 

(37) 

(38) 
m; ajE-. 

47rv’ 
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This result coincides precisely with the discrepancy between 6 and Scot 
found in Ref. [S]. 

V. CONCLUSIONS 

We have shown that in so far as QCD corrections are concerned, the correct- 
ness of a particular dispersion relation is most easily checked by using the Opera- 
tor Product Expansion to calculate the contribution of the circle at ]a) = 00. We 
have used the OPE to show that the DR of Ref. [3] correctly predicts the QCD 
correction to the the leptonic width of the Higgs I’(H -+ e+C-) to all orders in 
a,, whereas the DR of Ref. [l] ’ t m ro d 

O(aa,). 

uces an error of (a,/n) [(al/n) + (as/r)] at 
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